Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK).
نویسندگان
چکیده
Arsenic trioxide (As(2)O(3)) has anticancer properties; however, its use also leads to neuro-, hepato- or nephro-toxicity, and therefore, it is important to understand the mechanism of As(2)O(3) toxicity. We studied As(2)O(3) influence on intracellular calcium ([Ca(2+)](i)) homeostasis of human neuroblastoma SY-5Y and embryonic kidney cells (HEK 293). We also relate the As(2)O(3) induced [Ca(2+)](i) modifications with cytotoxicity. We used Ca(2+) sensitive dyes (fluo-4 and rhod-2) combined with laser scanning microscopy or fluorescence activated cell sorting to measure Ca(2+) changes during the application of As(2)O(3) and we approach evaluation of cytotoxicity. As(2)O(3) (1 microM) increased [Ca(2+)](i) in SY-5Y and HEK 293 cells. Three forms of [Ca(2+)](i)-elevations were found: (1) steady-state increases, (2) transient [Ca(2+)](i)-elevations and (3) Ca(2+)-spikes. [Ca(2+)](i) modifications were independent from extracellular Ca(2+) but dependent on internal calcium stores. The effect was not reversible. Inositol triphosphate (IP(3)) and ryanodine (Ry) receptors are involved in regulation of signals induced by As(2)O(3). 2-APB and dantrolene significantly reduced the [Ca(2+)](i)-rise (p<0.001, t-test) but did not completely abolish [Ca(2+)](i)-elevation or spiking. This indicates that other Ca(2+) regulating mechanisms are involved. In cytotoxicity tests As(2)O(3) significantly reduced cell viability in both cell types. Staining with Hoechst 33342 showed occurrence of apoptosis and DNA damage. Our data suggest that [Ca(2+)](i) is an important messenger in As(2)O(3) induced cell death.
منابع مشابه
Arsenic trioxide in environmentally and clinically relevant concentrations interacts with calcium homeostasis and induces cell type specific cell death in tumor and non-tumor cells.
While arsenic compounds are known as environmental toxicants (especially in drinking water) and as carcinogens, some arsenic compounds, like arsenic trioxide (As2O3), are clinically used in humans to treat some forms of cancer (e.g. leukemia). Although arsenic compounds have been studied intensively, their interactions with living cells are still not fully elucidated. We have previously propose...
متن کاملCo-application of arsenic trioxide (As2O3) and cisplatin (CDDP) on human SY-5Y neuroblastoma cells has differential effects on the intracellular calcium concentration ([Ca2+]i) and cytotoxicity.
Arsenic trioxide (As(2)O(3)) and cisplatin (CDDP) are clinically relevant chemotherapeutics which modulate the intracellular calcium concentration ([Ca(2+)](i)) by different mechanisms: As(2)O(3) depletes intracellular calcium stores while CDDP triggers an influx of Ca(2+). We investigate whether co-application of As(2)O(3) and CDDP has an effect on [Ca(2+)](i) homeostasis, resulting in an incr...
متن کاملEvaluation of Iranian Snake ‘Macrovipera lebetina’ Venom Cytotoxicity in Kidney Cell Line HEK-293
Background:Envenomation by Macrovipera lebetina (M. lebetina) is characterized by prominent local tissue damage, hemorrhage, abnormalities in the blood coagulation system, necrosis, and edema. However, the main cause of death after a bite by M. lebetina has been attributed to acute renal failure (ARF). It is unclear whether the venom components have a direct or indirect action in causing ARF. T...
متن کاملInvestigating Anticancer Effects of Silver Nanoparticles on Bladder Cancer 5637 Cells in Comparison to Human Embryonic Kidney Normal Cells (HEK-293)
Background & aim: Nanotechnology is a modern research field with broad applications in cancer management. Among the various metal nanoparticles, silver nanoparticles (AgNPs) have been used in cancer therapy due to their promising anti-tumor properties. Despite the great advantages of AgNPs, their effects on normal cells have become a challenge. Besides, their anti-cancer effects have not previo...
متن کاملThe roles of mitoferrin-2 in the process of arsenic trioxide-induced cell damage in human gliomas
BACKGROUND Among glioma treatment strategies, arsenic trioxide (As2O3) has shown efficacy as a therapeutic agent against human gliomas. However, the exact antitumor mechanism of action of As2O3 is still unclear. Mitochondria are considered to be the major source of intracellular reactive oxygen species (ROS), which are known to be associated with As2O3-induced cell damage. Therefore, we investi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicology and applied pharmacology
دوره 220 3 شماره
صفحات -
تاریخ انتشار 2007